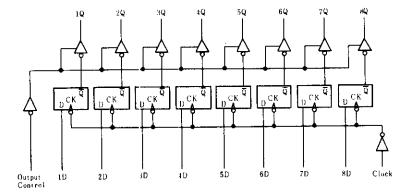

HD74LS374 Octal D-type Edge-triggered Flip-Flops (with three-state outputs)

The HD74LS374, 8-bit registers features totem-pole threestate outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance third state and increased high-logic-level drive provide this register with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. The eight flip-flops are edgetriggered D-type flip-flops. On the positive transition the clock, the Q outputs will be set to the logic states that were setup at the D inputs.

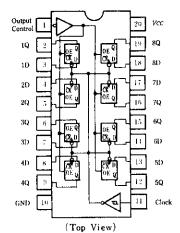
FUNCTION TABLE


	Inputs		Output
Output control	Clock	Đ	Q
L	t	н	н
L	t	L	L
L	L	×	Q ₀
Н	×	×	Z

BLOCK DIAGRAM

† = transition from low to high level

- Q₀ = level of Q before the indicated steady-state input conditions were established
- Z = off (high-impedance) state of a three-state output



MRECOMMENDED OPERATING CONDITION

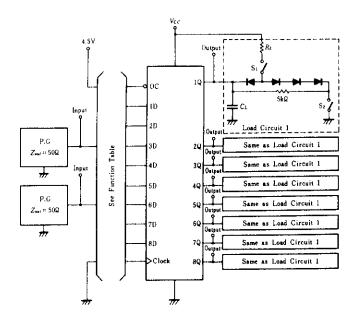
Iter	n	Symbol	min	typ	max	Unit	
Supply voltage		Vcc	4.75	5.00	5.25	V	
Output voltage		Voн		_	5.5	V	
<u></u>		Іон	_		-2.6	mA	
Output current		Ioz			24	mA	
Clock pulse "H" level			15	_	_		
width	"L" level	tw	15	_	_	ns	
Data setup tim	e	tou	20 t	_		ns	
Data hold time		t h	3 †		_	ns	

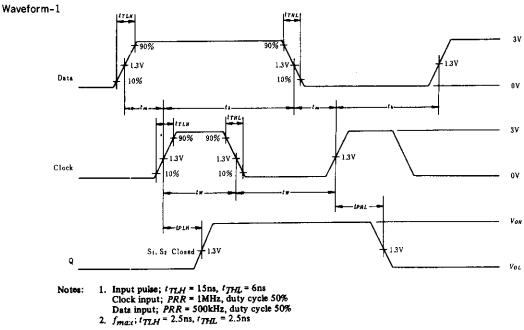
Note) † : The arrow indicates the rising edge of clock pulse.

PIN ARRANGEMENT

Item	Symbol	Test Conditions		min	typ+	max	Unit
T 4 14	VIH			2.0		-	V
Input voltage	VIL					0.8	V
	Van	$V_{cc} = 4.75 \text{V}, V_{1H} = 2 \text{V}, V_{1L} = 0$. 8V, I _{он} == - 2.6mA	2.4		-	V
Output voltage		$V_{CC} = 4.75 V, V_{IH} = 2 V,$ $V_{IL} = 0.8 V$	$I_{OL} = 12 \text{mA}$			0.4	v
	Vol		Iot = 24mA			0.5	
Off-state output current	Гогн	$-V_{CC} = 5.25 \text{V}, V_{IH} = 2 \text{V}$	$V_0 = 2.7 V$			20	μA
	lozz		$V_0 = 0.4V$			- 20	
	Іля	$V_{cc} = 5.25 \text{V}, V_t = 2.7 \text{V}$		_		20	μA
Input current	III.	$V_{cc} = 5.25 \text{V}, V_l = 0.4 \text{V}$		_	_	-0.4	mA
	I_{I}	$V_{\rm cc} = 5.25 V, V_{\rm c} = 7 V$				0.1	mA
Short-circuit output current	Ios	$V_{cc} = 5.25 V$		30	-	-130	mA
Supply current	Icc	$V_{CC} = 5.25V$, $V_l = 4.5V$ (Output control)			27	40	mA
Input clamp voltage	Vik	$V_{cc} = 4.75$ V, $I_{lN} = -18$ mA				-1.5	v

ELECTRICAL CHARACTERISTICS $(Ta = -20 \sim +75^{\circ}C)$

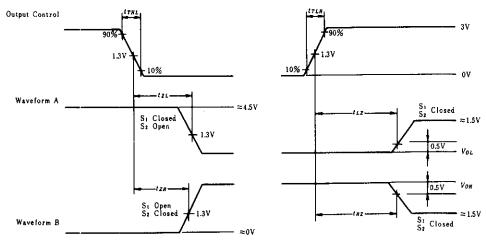

* *V_{CC}=SV*, *Ta=25*°C

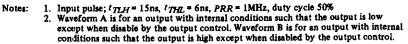

SWITCHING CHARACTERISTICS (*Vcc*=5V, *Ta*=25°C)

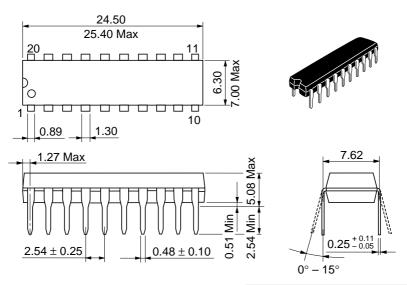
Item	Symbol	Inputs	Outputs	Test Conditions	min	typ	max	Unit
Maximum clock frequency	f mez	Clock	Q		35	50	-	MHz
Decomposition debut time	t _{PLH}	Charle	0	C (F.F.		15	28	
Propagation delay time	LPHI.	Clock	Q	$C_{L} = 45 \mathrm{pF}$ $R_{L} = 667 \Omega$		19	28	
Output multiplication	L2H	OC Q		R1=00/11		20	28	_
Output enable time	tzi					21	28	- ns
Output disable since	tuz	ос	0	$C_t = 5 pF$	—	12	20	
Output disable time	112	UC .	Q	$R_L = 667 \Omega$		14	25	

TESTING METHOD

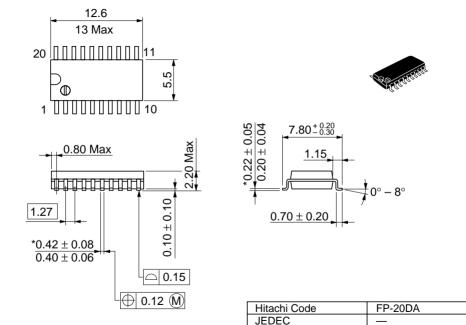
Test Circuit







Waveform-2

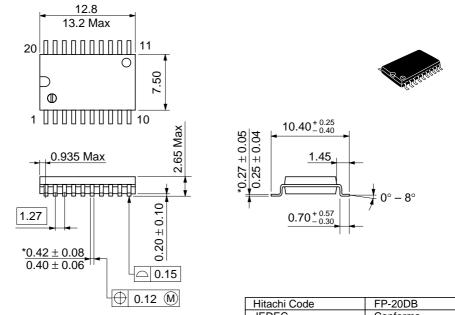


Unit: mm

Hitachi Code	DP-20N
JEDEC	
EIAJ	Conforms
Weight (reference value)	1.26 g

Unit: mm

EIAJ


Weight (reference value)

Conforms

0.31 g

*Dimension including the plating thickness Base material dimension

Unit: mm

*Dimension including the plating thickness Base material dimension

Hitachi Code	FP-20DB
JEDEC	Conforms
EIAJ	_
Weight (reference value)	0.52 g

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 NorthAmerica URL http:semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg Europe http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm http://www.hitachi.co.jp/Sicd/indx.htm Japan For further information write to: Hitachi Semiconductor Hitachi Europe GmbH Hitachi Asia Pte. Ltd. (America) Inc. Electronic components Group 16 Collyer Quay #20-00 179 East Tasman Drive, Dornacher Stra§e 3 Hitachi Tower San Jose,CA 95134 D-85622 Feldkirchen, Munich Singapore 049318 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Germany Tel: 535-2100 Tel: <49> (89) 9 9180-0 Fax: 535-1533 Fax: <49> (89) 9 29 30 00

 Fax: <49> (89) 9 29 30 00
 Hita

 Hitachi Europe Ltd.
 Hita

 Electronic Components Group.
 Taip

 Whitebrook Park
 3F,

 Lower Cookham Road
 Tun

 Maidenhead
 Tel:

 Berkshire SL6 8YA, United Kingdom
 Fax

 Tel: <44> (1628) 585000

 Fax: <44> (1628) 778322

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

HITACHI

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.